The Irrelevant Values Problem of Decision Tree in Medical Examination
نویسندگان
چکیده
Data mining technique is extensively used in medical application. One of key tools is the decision tree. When a decision tree is represented by a collection of rules, the antecedents of individual rules may contain irrelevant values problem. When we use this complete set of rules to medical examinations, the irrelevant values problem may cause unnecessary economic burden both to the patient and the society. We used a hypothyroid disease as an example for the study of irrelevant values problem of decision tree in medical examination. Hypothyroid disease is used to associate to the mechanism of thyroid-stimulating hormone (TSH). Physicians will combine lots of information; such as patient’s clinical records, medical images, and symptoms, prior to the final diagnosis and treatment, especially surgical operation. Therefore, to avoid generating rules with irrelevant values problem, we propose a new algorithm to remove irrelevant values problem of rules in the process of converting the decision tree to rules utilizing information already present in the decision tree. Our algorithm is able to handle both discrete and continuous values.
منابع مشابه
Rules Generation From the Decision Tree
To avoid checking unnecessary or irrelevant conditions of rules, the irrelevant values problem of the decision tree is addressed. We propose an algorithm to remove irrelevant conditions of rules in the process of converting the decision tree to rules according to the semantics of the decision tree. Since our algorithm depends only on the semantics of the decision tree, our algorithm can be inte...
متن کاملComparison of gestational diabetes prediction with artificial neural network and decision tree models
Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...
متن کاملIdentification of the most important factors of ethnic differences in anthropometric dimensions of Iranian workers using the decision tree
Background and aims: Anthropometry is the branch of human science that considers the physical measurement of the human body, especially size and shape. One application of anthropometrical data in ergonomics is the design of working space and the development of industrialized products. So that the tools, equipment and workstations, which designed based on the physical dimensions of the workers, ...
متن کاملEvaluation of liquefaction potential based on CPT results using C4.5 decision tree
The prediction of liquefaction potential of soil due to an earthquake is an essential task in Civil Engineering. The decision tree is a tree structure consisting of internal and terminal nodes which process the data to ultimately yield a classification. C4.5 is a known algorithm widely used to design decision trees. In this algorithm, a pruning process is carried out to solve the problem of the...
متن کاملA New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction
In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012